Sequence to Sequence Learning for Query Expansion
نویسندگان
چکیده
منابع مشابه
Sequence to Sequence Learning for Event Prediction
This paper presents an approach to the task of predicting an event description from a preceding sentence in a text. Our approach explores sequence-to-sequence learning using a bidirectional multi-layer recurrent neural network. Our approach substantially outperforms previous work in terms of the BLEU score on two datasets derived from WIKIHOW and DESCRIPT respectively. Since the BLEU score is n...
متن کاملUnsupervised Pretraining for Sequence to Sequence Learning
This work presents a general unsupervised learning method to improve the accuracy of sequence to sequence (seq2seq) models. In our method, the weights of the encoder and decoder of a seq2seq model are initialized with the pretrained weights of two language models and then fine-tuned with labeled data. We apply this method to challenging benchmarks in machine translation and abstractive summariz...
متن کاملConvolutional Sequence to Sequence Learning
A. Weight Initialization We derive a weight initialization scheme tailored to the GLU activation function similar to Glorot & Bengio (2010); He et al. (2015b) by focusing on the variance of activations within the network for both forward and backward passes. We also detail how we modify the weight initialization for dropout. A.1. Forward Pass Assuming that the inputs x l of a convolutional laye...
متن کاملConvolutional Sequence to Sequence Learning
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks.1 Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fi...
متن کاملLearning to Start for Sequence to Sequence Architecture
The sequence to sequence architecture is widely used in the response generation and neural machine translation to model the potential relationship between two sentences. It typically consists of two parts: an encoder that reads from the source sentence and a decoder that generates the target sentence word by word according to the encoder’s output and the last generated word. However, it faces t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.330110075